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Abstract

When a reinforcement learning agent executes actionsdnatause fre-
guently damages to itself, it can learn, by using Q-learnthgt these ac-
tions must not be executed again. However, there are ottienaghat do
not cause damage frecuently, only once in a while: riskyoasti such as
parachuting. These actions may imply a big punishment tagent and,
depending on its personality, it would be better to avoidvédtheless, using
the standard Q-learning algorithm the agent is not ablestml® avoid them,
since the result of these actions can be positive in avelagbis paper, an
additional mechanism to Q-learning, inspired by the enmotibfear, is in-
troduced in order to deal with those risky actions by coméidethe worst
results of them. Moreover, there is a daring factor for difjgsthe consid-
eration of the risk. This mechanism is implemented on anraartmus agent
living in a virtual environment. The results present thefpenance of the
agent with different daring degrees.



1 Introduction

In this research, it is considered that a risky action is tia, in average, can
produce positive results but, once in a while, generateg bad results for the
agent.

Let us show an example of an action that can become riskynlhappen that
one likes mushrooms: they taste good and satisfy hungeiif Batsome occasion
one suffers an intoxication due to these mushrooms, onenwillprobably eat
them again, although that happened just one time. Therefogeaction of eating
mushrooms becomes risky.

When an action executed by the agent has bad results frégubntagent, by
using Q-learning [Watkins, 1989], learns not to select ihisTis due to the very
low value of the action as a consequence of the negativeoregrhent received
when it is executed. A different situation occurs when théoads risky. In this
case, the agent can learn that the long term value of thisraigihigh, although
it receives very negative reinforcements with a small pbdltg This is because
this learning algorithm does not take into account the wexptriences when the
agent executed this kind of action, just the average value.

In this paper, we present a model-free method in order to firdtle opti-
mal policy in the described situation. A model-free methwogblies that the agent
knows neither the state transition probability functiom tiee reinforcement func-
tion [Kaelbling et al., 1996]. We have developed an add@lamechanism to the
standard Q-learning algorithm in order to consider not ah& average value of
the actions but also their worst results. In this mechansiaring factors will
adjust the importance that the agent gives to both conioilsit

In order to test this mechanism, it is implemented in an autowus agent liv-
ing in a virtual environment. In this approach, it is consatkthat the agent is mo-
tivationally autonomous. According to Gadanho [Gadan®89] and Cafiamero
[Cafiamero, 2003], an autonomous agent has goals and nwisand it has some
ways to evaluate its behaviours in terms of the environmadtits own motiva-
tions. Its motivations are desires or preferences thatezohto the generation and
adoption of objectives. The final goals of the agent, or itsivations, must be
oriented to maintain its internal equilibrium.

In this research, the agent lives in a virtual world surradcddy objects that
it needs in order to satisfy its necessities (e.g., food &bisk/ing hunger). The
agent knows the properties of every object, that is, it knahiih actions can be
executed with each object (affordances). What the agerst doeknow is which
action is more appropriate in each situation. It must legooley of behaviour in
order to maintain all its needs within acceptable ranges ddiicy establishes a
normative about what to do in each situation. This meanshigsagent must learn
the proper relation between states and actions by evajutitinlong term value of
executing an action in a certain state for every actioregtatr.

In this paper, the performance of an autonomous agent cangidthe worst
effects of its actions is studied. Since the value of thendgdctorg is an important
parameter for the final design of the agent, its performasogseveral values of
this factor is presented.

The paper is organized as follows. First, section 2 intreduthe proposed
mechanism to complete the Q-learning algorithm in orderdal avith risky ac-



tions. Next, in section 3, a brief review of some related vgdekgiven. Section
4 shows the experimental procedure used in this work. Firstenvironment, the
virtual world where the agent lives, is briefly described.eha general view of
how the agent is modeled as well as a description of its Iegrpiocess are given.
Moreover, the adaptation of the proposed mechanism to thierguapplication is
presented. The results obtained varying the daring fa¢tihiecagent are presented
in section 5. Finally, the main conclusions of this papersam@marized in section
6.

2 Theproposed method to deal with risky actions

As previously stated, the agent learns how to behave in @agyible situation
by using the Q-learning algorithm [Watkins, 1989]. The gofthis algorithm is
to estimate thé)(s, a) values. These values are the expected reward for executing
the actiona in the states and then following the optimal policy from there. Every
Q(s,a) value is updated according to

Q(s,a) = (1—a) - Q(s,a) +a- (r+V(s) @
where
V(s') = max (Q(s', a)) )

is the value of the new statéand is the best reward the agent can expect from this
state. A is the set of actions; is the reinforcementy is the discount factor, and
is the learning rate.

Once the optimal functiof, is obtained, then it is easy to calculate the optimal
policy, by observing every possible action in a certainestatd selecting the one
that:

mazimizes (Q(s,a)) (3)

The proposed method is inspired in the emotion of fear. Whnenig afraid of
executing an action, it is because, one knows that thisracém have a noxious
effect. This effect constitutes a negative reinforcem@stalready stated, by using
Q-learning, the agent learns the average values of itsractid herefore, if an
action is frequently noxious, the agent learns to avoid iut ®hen the action
causes negative effects only occasionally, then anothehamésm is needed in
order to learn to deal with those risks. The agent must lednat ¥o do with these
risky actions.

It is important to note that these kind of actions are exatbtethe agent and
the next state reached by it is a consequence of its actiagreldre, this must not
be confused with rare events, since according to Frank dtrahk et al., 2008],
those events occur independently from the actions of thatage

The idea of these risky actions is that, in general, they hawsitive effect, but
once in a while they cause a very negative reward. Thereifor@der to consider
these very negative effects on the agent, the worst resyerienented by it, and
for every state-action pair, are stored in a variable callgg.«.(s, a). This variable
is updated after the execution of the action.



Qworst(37 a) - min(Qworst(37 a), T+ v Vworst(sl)) (4)
where

Vworst(sl) = ma}(@worst(slv a)) (5)

ac

is the worst value of the new statéand it is considered as the best the agent can
do with the worsQ values.

Let us define a newQ value, Q.- (s,a), that includes the average value,
calculated using Q-learning by (1) and (2), as well as thesi¥@wralue, calculated
by (4) and (5):

ﬁ : Q(Saa) + (1 - ﬁ) : Qworst(saa) If Qworst(saa) S Lm
Qfear(37 a) =
Q(s,a) Inother cases
(6)
where L,, is a user specified threshold. According to (6), only whenwiest
value of the actioru executed in the stateis lower than the limitZ,,,, then the
agent takes into account the wo@walue as well as the optim§) value.
In this research, in order to deal with risky and non-riskyicarcs, the agent
chooses the action that:

maximizes (Q fear (S, a)) (7)

Parametef3, denominated the daring factor, beidg< 8 < 1, measures the
daring degree of the agent. It can be noticed that, when1, the agent uses the
@ values calculated by the standard Q-learning. In fag,iff near 1, the agent is
very daring, or risk-seeking, since it barely takes intooact the worst result of
the action; on the contrary, for a risk-adverse agent tied to minimize the risk,
£ will be near 0.

This daring factor depends, in the case of humans, on themaity. In real
life, there are some activities that could be consideredslg, rsuch as climbing,
parachuting, bungee jumping, and so on. Neverthelesg #iermany people who
like those activities very much without considering the gible risks and their
fatal consequences that may lead to death. On the other e, other people
consider that the rush of adrenaline caused by those &givdb not compensate
the risk.

3 Redated work

The algorithm proposed in this paper can be seen as a newaappto risk-
adverse reinforcement learning. One of the most populgrgsals was presented
by Heger [Heger, 1994]. He proposed a new algorithm cal}eléarning to find
out the policy that minimizes the worst-case total discedrtosts. Thé) value is
updated as follows:

A~

Qo) = Qo)+ in Q1)) ®



wherec is the immediate cost. The objective is to learn optimaloactiso as to

minimize (max (c +y- rb%ifxl Q(s, b)> > 9

As can be easily observed, oi},.s; Value is calculated by using (4) and (5)
in a very similar way to thig) value. In fact, both algorithms are the same when the
daring factors is equal td). Note that in our case, we try to maximize the minimum
reward, while Heger tries to minimize the maximum cost. Mwerr, the algorithm
proposed by Heger only cares about avoiding the risk, whitedne proposed in
this paper offers the possibility of selecting how the riffkets the decision making
process. Depending on the value of the daring factor, thetage be risk-adverse
or not. These kind of algorithms are denominatis{-sensitive

There are several risk-sensitive approaches, such as #wioimoduced by
Howard and Matheson [Howard and Matheson, 1972] and Cqrahmnd Marcus
[Coraluppi and Marcus, 1999]. Both proposals make usexmonential utility
functions The idea is to transform the cumulative returns by expaakntility
functions and seek optimal policies with respect to thibtytmeasure. The risk-
sensitive objective is given by:

1
minimizes log £ [e k
Again, c represents the immediate cost. Besides, there is a riskiamecoef-
ficientd. When it is small, the value to be minimized in (10) takes threnf.

> o > ck] (11)

k k

Therefore, for§ > 0 the variability in the cost is penalized, so the agent is
risk-adverse. Thexpected value-minus-variance-criteriproposed by Heger has
a similar effect to the expected-utility one:

1)
E + §Var

E(R) — kVar(R) (12)

wherek is called the risk-adverse factor aftis the reward, see [Heger, 1994].

In these cases, the agent needs the transition and reimfentgrobabilities of
the environment, in contrast with our approach, that is rhifrde.

Mihatsch and Neuneier [Mihatsch and Neuneier, 2002] alspgsed a risk-
sensitive reinforcement learning algorithm based on a défgrent philosophy.
Instead of transforming the cumulative return of the precas in the utility the-
ory, theytransform the temporal differencgso-called TD-errors) which play an
important role during the procedure of learning the valuerddver, they are able
to formulate risk-sensitive versions of Q-learning and [EBrning. The transfor-
mation function is defined as follows:

k. (1—-Fk)z ifx>0
X iEe { (L+ k) otherwise (13)

wherek e (—1,1).



The risk-sensitive Q-learning algorithm proposed upd#ies) values as fol-
lows:

Qo) = Qo) +a i (1m0 - Q)] (19

The only difference from traditional Q-learning is in tharisformationy* that
weights positive and negative temporal differences apjatgly. Settingk = 0,
we recover the original Q-learning algorithm. Afis set to be positive, then the
negative temporal differences are overweigh with respepositive ones. Loosely
speaking, they overweigh transitions to successor statesenthe immediate re-
turn » happened to be smaller than in the average. On the other theydnder-
weigh transitions to states that promise a higher retunmithéhe average. In other
words, the objective function is risk-avoidingkf> 0 and risk-seeking ik < 0.

Again, the optimal action is the one that, for every state:

mazimizes (Q(s,a)) (15)

In this case, the main difference with respect to our algorits that after the
learning process is finished, the leathvalues are dependent on the selected value
of k. Using our approach, the optimé&l values and thé),,.s; values are calcu-
lated. Therefore, if we want to calculate thg.,, values using a different risk-
sensitive factor or daring factgt, we do not need to launch the learning process
again. Moreover, our proposal allows the possibility ofyiag the daring factor
during the life of the agent.

On the other hand, there is another different approach byabgseibel, 2001]
[Geibel and Wysotzki, 2005] that defines the risk as the griiba of entering a
fatal state. They consider the problem of finding out optipwicies withbounded
risk, that is, the risk is smaller than some user-specified toidsh Finally, they
propose a learning algorithm in such a way that if the ageint &sstates, then it
selects an action that

mazimizes (AQ(s,a) — o(s,a)) (16)

whereQ(s, a) are the values obtained using the Q-learning algorithmegrda)
is the probability that the agent ends in a fatal state. Pat@m can be used to
increase or decrease the influence of¢healues compared to thevalues.

The idea is to start the learning process witk= 0 and to increase its value
until the number ofu-safe states for the current policy decreases. This prbposa
is very interesting, although, as said before, the risk lsted to a very different
concept: entering a pre-defined set of fatal states. In oproagh, as in many
others, the risk is related to the execution of certain astitat may lead to bad
rewards. Moreover, there is no pre-defined information abmistates.

4 Experimental test-bed

As previously said, the proposed mechanism for dealing vis#y actions is
tested on virtual autonomous agents who are living in aairtmvironment. This
experimental platform has been already used to test a deaisaking system for



an autonomous agent based on drives, motivations and emadiitalfaz and Salichs, 2006]
[Malfaz and Salichs, 2010][Salichs and Malfaz, 2011]. Themdifference of the
presented work with the previously refereed ones is thati;mnew implementa-

tion, some risky actions are included, so the proposed nmésinais needed. In

this section, a brief description of both, the virtual eamiment and the description

of the drives and motivations of the agents, are presentegtedder, the imple-
mentation of the proposed additional mechanism to the ilegprocess is also
described.

4.1 Thevirtual environment

In order to create the environment, we use a role playing daesed on text,
available on the net and called CoffeMud [Zimmerman, 2007] this environ-
ment, formed by corridors and rooms, see figure 1, the plagerfind different
objects: food, water, medicine, elixir, and world.

Figure 1: Virtual environment

The food, the water, the medicine, and the elixir are distad in rooms in
such a way that there is a room with food, another with medicanother with
water, and finally another with elixir., The amount of objeptesent in those
rooms is huge and therefore, it is considered that the agentfiimited resources.
The agent, at the beginning of its life, does not know wherinid those objects.
Throughout its life time, it finds the objects and remembheirtposition. There-
fore, if the agent needs an object, it will know where to findhis virtual world is
grid-based, as can be observed in figure 1, and the agent ramuasd by sending
‘north’, ‘south’, east’, and 'west’ commands.

4.2 Drivesand motivations of the agent

As stated in section 1, it is considered that an autonomoastadtas certain
needs (drives) and motivations. The goal of the agent witbdearn to select the
right action in every state in order to maintain those neeitinvan acceptable
range.



421 Drives

The considered drives and motivations are the following:
e Hunger

e Thirst

e Weakness

The Hunger and the Thirst drives are obviously related tdeattle of resources
and their values increase as the agent spends time withesiicong food or water.
The Weakness drive, on the other hand, is related to the reetavery of the
agent.

The values of the Hunger and the Thirst drives increase ainesimount at
every step simulation. These drives do not grow at the satee Rhysiological
studies determine that in most human beings the necessiyatefr (thirst) ap-
pears before the necessity of food (hunger). In [GautierBoatee, 2005], it is
presented how Maslow discovered that certain needs preveilothers. For ex-
ample, if one is hungry and thirsty, one will tend to reliekidt before hunger. As
a conclusion, the Thirst is a stronger drive than the Hunger.

On the other hand, these drives, after being satisfied {thkies become zero),
do not start to increase their values immediately but aftereain time, which we
call “satisfaction time”. This happens in the same way aar afating, since one is
not hungry again until some hours later. In the next equatlmnsatisfaction times
corresponding to these drives are shown:

Tihirst = 50 steps

Thunger = 100 steps (17)

According to these values, the Thirst drive is the most urgew, since it
takes less time to increase its value again. As already iagolaone is thirsty
more frequently than hungry. Once the satisfaction timsgmghe drives grow as
follows:

k+1 _ Pk
Dthirst - Dthirst +0.1

DL _ pk (18)

hunger hunger

+0.08

As shown, the growing rate of the Thirst drive is higher tHzeat bf the Hunger
drive.

On the other hand, the variation of the Weakness drive dependhe move-
ment of the agent. Therefore, if the agent stands still,dhis does not suffer any
variation, but if the agent moves, the value of the drivedases at every step, as
shown next:

DfuJeralkness = Dﬁjeakness +0.05 (19)

As shown, the growing rate of the Weakness drive is lower tharones of the
Hunger and Thirst drives. Moreover, this drive does not readidfaction time.



4.2.2 Motivations of the agent

The motivational states represent tendencies to behawariicydar ways as a
consequence of internal (drives) and external (incentiweusi) factors [Avila Garcia and Cafiamero, 200
In other words, the motivational state is a tendency to cotie error, that is, the
drive, through the execution of behaviours.
In this approach, in order to model the motivations of thendgee use Lorentz’s
hydraulic model of motivation as an inspiration [Lorenz amyhausen, 1973].
Therefore:

If D; < LgthenM; =0
If D; > Ly thenMi = D; + wj;

wherelM; are the motivations]; are the related drives;; are the related external
stimuli, andL, is called the activation level.

These external or motivational stimuliy;, are the different objects that the
agent can find in the world during its life, so:

(20)

If the stimuli are present, then; = 1

If the stimuli are not present, then, = 0 (21)

Table 1 shows the motivations/drives and their relatedvattinal stimuli.

Table 1: Motivations, Drives, and Motivational stimuli

Motivation/Drive  Motivational stimuli

Hunger Food & elixir
Thirst Water & elixir
Weakness Medicine & elixir

The activation levelL;, used in (20) for calculating the value of the intensity
of motivations, is set as follows:
Lg=2 (22)

These values of the external stimuli and the activationl lesree been selected
based on previous experiments where several values wésd.tes

4.3 I mplementation of thelearning algorithm with theadditional mech-
anism for dealing with risky actions

4.3.1 Reinforcement function
In this research, the wellbeing of the agent is defined as ¢igeeé of needs
satisfaction and is calculated as follows:

Wb = Wbideal - (athunger + a2Dthirst + a3Dweakness) (23)

wherelVb;4.; = 100 is the ideal value of the wellbeing of the agent amdare the
ponder factors that measure the importance of each driveeowellbeing of the
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agent. In the experiments, all the drives will have the sanmoitance. Therefore,
all the ponder factors are equal to one another:

; = 1 (24)

The wellbeing is defined this way since, logically, as thedseef the agent
increase, its wellbeing must decrease. Therefore, whehelirives of the agent
are satisfied, their values are zero and the wellbeing issan@ximum. It can
happen that the value of the wellbeing of the agent is negativ

Since the goal of the agent is to learn behave in order tdhg@Baneeds, it can
be also said that the final goal is to learn to select the rigtib@in every state in
order to maximize the wellbeing of the agent. Therefore, fistidea, it seemed
logical to think of using the wellbeing of the agent as thaf@icement function,
since it gives information about the effect of an executeibaomn the agent. In
fact, Gadanho [Gadanho and Custodio, 2002] defines a wedjlsgnal generated
in a similar way and it was used as the reinforcement fundticm reinforcement
learning frame. Nevertheless, for our research, it seente tmore appropriate
to use the variation of the wellbeing as the reinforcementtion. In fact, this
variation gives a clearer idea about how an action affeetsvllbeing of the agent.

This variation of the wellebing/A177b) is calculated as the current value of the
wellbeing minus its value in the previous step, as showneémigxt equation:

AWV = Wkt — wpk (25)

The biggest positive variation of the wellbeing will be puoed when the drive
with the highest intensity is satisfied.

4.3.2 State of the agent

In this system, the state of the agent is defined as the cotidnnaf its inner
state,Sinuner, and its external state,. ic.qi, @S shown in (26). The inner state of
the agent is related to its internal needs (e.g., the agémninigry) and the external
state is the state of the agent in relation to all the obje@sgnt in the environment
(e.g., the agent has food and water):

S = Sinner X Sexternal (26)

The inner state is determined by the motivation with the égglintensity, that
is, the dominant motivation, as shown in (27). According20)( if none of the
drives is high enough, then alll; = 0, and there is not any dominant motivation.
In this case it can be considered that the agent has no neesd$K".

(27)

g, | argmax; M; If max; M; # 0
mmer T OK In other cases

According to the considered motivations, the inner stathefgent is defined
as follows:

Sinner = {Hungry, Thirsty, Weak, OK} (28)
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On the other hand, the external state, as we have just sdhk sate of the
agent in relation to all the objects:

Se:cternal = Sobj1 X SOij"' (29)

In previous works [Malfaz and Salichs, 2006] [Malfaz andi&@a, 2009], it
was explained that, in order to reduce the complexity of #aerling process, the
states related to the objects are considered as indepenai®erdne another. There-
fore, the agent learns how to behave in relation to everycbisigparately. Then,
for example, the agent learns what to do with food indepethgdémm learning
what to do with water. This implies that tlig values are now calculated for each
object in every inner state. From now on, the nomenclatur¢hi®Q values will
be Q?%i(s,a). The super-indexbj; specifies the object that the agent is dealing
with, a € Ay, , whereA;, is the set of actions related to the objécinds is the
total state of the agent in relation to objé&ind is defined as follows:

S € Smner X Sobji Vi (30)

Therefore, the agent will learn, for example, what to do viitbd when it is
hungry, with food when it is thirsty, with water when it is lgng, and so on.

The state related to every object, except fontteeld object, is the combination
of three binary variables:

Sopj = Being_in_posession_of x Being_next_tox Knowing_where_to_find
(31)
The state of the agent in relation to thwrld object is unique: the agent is
always in the world.

Sworta = Being_at (Always True) (32)

4.3.3 Actionsof the agent

The sets of actions that the agent can execute, depending statie in relation
to the objects, are the following:

Atood = {Eat, Get, Go to} (33)

Apater = {Drink water, Get, Go to} (34)
Apedicine = {Drink medicine, Get, Go to} (35)
Aelizir = {Drink elizir, Get, Go to} (36)

Aworta = {Stand still, Explore} (37)



12

The “explore” and “go tamame of the roofhactions are sequences of move-
ment commands. The “explore” action tries to reach everynrob the environ-
ment and the “go to” action gives the sequence of movementr@nds to reach
the target room following the shortest path.

Among all these behaviours, there are some of them that eauserease or
decrease of some drives, as shown in table 2, leading toatiearin the wellbeing
of the agent.

Table 2: Effects of the actions on drives

Action Drive Effect
Eat Hunger Reduce to zero (drive satisfaction)
Drink water Thirst Reduce to zero (drive satisfaction)

Drink medicine Weakness Reduce to zero (drive satisfaction

Hunger

0 . ) . : .
Drink elixir Thirsty 95% of times: Reduce to zero (drive satisfaction)

5% of times: Increase 4 units
Weakness

Explore/ goto  Weakness Increase 0.05 per each step

As can be observed, the actions related to the consumptifiodf water, and
medicine always satisfy drives and so, they will produce sitpe reward. On
the other hand, the consumption of the elixir produces, niogs, a big positive
effect on the wellbeing of the agent, satisfying Hungerydthand Weakness. Nev-
ertheless, the elixir occasionally works as a “poison” thatls to an increment of
Hunger, Thirst, and Weakness. Those increments of 4 urotapared with the
amounts increased at every simulation step, see (18) andaiEvery high. This
implies that the wellbeing of the agent suffers a decremei anits of magnitude
and so, it is a big punishment.

Therefore, according to the definition given in section 1 aodsidering the
effects of the actions shown in table 2, we can conclude ttettis only a risky
action: to drink elixir. The rest of actions have always thee effect, although
in the case of the ones related to the consumption of obje&ssannot say that
they have the same positive reward, since it will depend ercthirent value of the
satisfied drive.

4.3.4 Learningtotakeinto account therisky actions

Considering the assumptions made in relation to the eXtstate, the pro-
posed method for dealing with risky actions is modified. t-itlse worst results



13

experimented by the agent during its life, for every statiea pair, are stored in
the next variable:

bji 3 bji bji
qugrst(SObjw a) = mln(Q;grst(SObjﬂ a’)? T+ v Vu?oz"st(si)bji)) (38)
where
Vu?og"lst(si)bji) = ax (qug;st(slobjp a)) (39)
aerbji

is the worst value of object in the new states’ and it is considered as the best
the agent can do with the wor@values. This worst value is calculated for every
object separately.

These values are calculated for every object of the enviemymot for every
inner state and object. This is because they do not depertteanrter state of the
agent. The idea is the following: if one is hungry and eats ahmaom that causes
him a stomachache, one will try to avoid mushrooms alwaysusbwhen hungry.

Now, the proposed method inspired by the emotion of fear déftoy (6) is
also modified as follows:

obj; 5 ’ QObﬁ(& a’) + (1 - 6) : nggvi"st(SObjw a) If nggvi"st(SObjiv a) < Ln
fech(S’ CL) =
Q°Yi(s,a) In other cases
(40)
whereL,, is the same threshold introduced in (6). According to (4@)y evhen
the worst effect of the action related to object and executed in the statg;,
is lower than the limitZ,,,, then the agent takes into account the wQstalue as
well as the averag® value. It must be said that, in our experiments, there is not
any action that always causes negative affects. Therefmdyave two kinds of
actions: those that always cause positive effects (nday-gstions) and those that,
in average, cause positive effects but occasionally pmdecy negative rewards
(risky actions). As a consequence, when the worst effech @icéion is lower than
L, it will be considered that this action is a risky one. _
As stated in section 2, the agent chooses the action thamfmd@‘]’f;{;r(s, a).

Using this approach, if the action is considered as risky etkpected result of the
action is considered at the same time as the least favorable o

5 Experimental results

In this section, the procedure followed in this experimsrghiown. The life of
the agent consists of two phases: the learning phase antbtuy phase.

e During the learning phase, the agent, by using Q-learnigynk the long
term value of every action in every staf@®’i(s,a) by exploring all the
state-action pairs. The agent starts with all the inifJatalues equal to zero.
Through its experience in the world, it learns and updatg) ivalues. It
tries out actions probabilistically based on tevalues using a Boltzmann
distribution [Watkins, 1989]. In this distribution, theisea parameter called



14

temperature that can be tuned. At the beginning of this piestemperature
is high in order to favor the exploration of every action. Adpthis phase
this temperature decreases gradually for the exploitatidhe most suitable
actions. Moreover, the value of the learning ratalso decreases gradually
from the value0, 3 till 0. The value of the discount facter is set to0, 8
during the entire phase.

At the same time, in order to implement the mechanism destiiio section
4.3.4, the agent stores the worst experienced results ¢brstate-action pair

bji
qug;st(sobjw a).

e During the steady phase, the agent lives using the value# ieathe learn-
ing phase by selecting the actions that maximize@ljﬁ;(s,a) defined in
(40). It is important to note that the agent will select amatighe available
actions related to every object. Therefore, at one time ¢amiacan inter-
act with food and in the next step with water, for instancewilt select the
action with the highes@jf;{.jr(s,a) value. In relation to the learning param-

eters, the value of the learning rates set to0 and the discount factoy is
set to0, 8.

During this phase, the daring fact@rvaries in order to observe the perfor-
mance of the agent with different degrees of courage. Thiagl&actor, de-
fined in section 4.3.4, ponders the worst value of the ac%f’fjst(sobji ,a),
and its average valu€°i (s, a).

The results presented in this section corresponds to aesinice it is better
to analyze the performance of the agent in more detail, ieraim understand the
algorithm proposed.

In this experiment, the limiL,,, used in (40) has been fixed, after several ex-
periments, to a value equal to the negative reinforcemeitttie agent receives
when the elixir works as a poisoik,,, = —12

In figure 2, the evolution of the wellbeing of the agent durbajh phases is
shown. The learning phase goes from the beginning of itsilifé5000 simulation
steps and the steady phase fréB000 till 75000.

As can be observed, during the learning phase the wellbeirtheoagent
presents important drops. These decrements are mostlyodbe times that the
agent drank the elixir when it was a poison, causing the pickse Hunger, Weak-
ness, and Thirst drives, see figure 3. It must be said thhgwdh in this experiment
the agent cannot die, the negative reinforcement receivedalthe poisoning is
significantly high. Therefore, in order to analyse the rsswle must consider the
number of poisonings during the steady phase.

In this experiment, the steady phase has been divided ifferatit zones with
different values of the daring factgt. As shown in figure 4, during the steady
phase the wellbeing varies as the daring factor decreashis variation has a
forward relationship with the number of times that the agiank the elixir and
disagreed with it. In fact, it can be observed that as thendddctor decreases, the
drops in the wellbeing due to the poisoning disappear.

In table 3, the values of the daring factérand the number of times that the
agent drank the elixir are shown, as well as the number obpaigs (number of
drops). The shown values confirm that as the daring factoredses, the agent
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Figure 3: Drives of the agent

stops drinking the elixir, since it becomes risk-adverskis Theans that it is more
concerned about the possibility of being poisoned and timeben of drops in the
wellbeing disappears.

Let us analyze som@% 7" (s, a) values in order to understand the results better.
First, the worstQ?%:

worst(Sobj;» @) values of the actions related to the elixir are shown
in figure 5. As was expected, these values are all lower thahrttit introduced in
(5). On the other hand, the worst registered values for thierecrelated to food,
water, and medicine are higher than the lithj}, given by (5). This is because
nothing bad happens when the agent executes actions with tigects.

obji
fear
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Table 3: Results of the steady phase

Steady phase Value 6f N° of times that the agent  MNof poisonings
drank the elixir
from 45000 to 50000 1 68 2
from 50000 to 55000 0.9 68 3
from 55000 to 60000 0.8 21 2
from 60000 to 65000 0.7 0 0
from 65000 to 70000 0.6 0
from 70000 to 75000 0.5 0

Figure 6 shows th€°%i (s, a) values of the actions related to the elixir when
the dominant motivation is Hunger. As can be observed, thalses are very high.
This is because, as previously explained, the learnt valtethe average value of
the reinforcements received. In general, as observed Ia @bthe number of
poisonings is very small in comparison with the number ofetinthat the elixir
satisfied all the needs of the agent. Therefore, in averagesftects of the elixir
are very positive.
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Figure 6:Q°%i(s, a) values of the actions related to the elixir when the dominant
motivation is the Hunger

Next, the analysis of th@?ﬁ{jr(s,a) values of the actions related to the food
and the elixir when the agent is hungry is going to be preserfégure 7 shows
the Q;er(s, a) values of the actions related to the food (left part of thebjand
the elixir (right part of the graph). In every sub-graph, sieady phase is divided
into different zones with the previously selected valuethefdaring facto. As

shown, theQ"bj" (s, a) values of the actions related to the food do not change as the

fear

daring factor decreases, since t]jgbg;;st(sobji, a) values are higher than the limit
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introduced in (5). As a consequence, according to ( (s a) = Q%i(s,a).

On the contrary, theg”l;{;r(s a) values of the actlons related to the elixir de-
crease as the daring factor decreases. In figure 5, it is\aabérat the worst values
are much lower than the limit introduced in (5). Therefotthaugh theQ?%i (s, a)
values of the actions related to the elixir are very highpading to (40) the values

Q“bji (s,a) related to the elixir are going to vary as shown in the figure.

fear
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10 10

o T (T

= o
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Figure 7: Q"bj' (s,a) values of the actions related to the food (left) and the elixi
(right), when the dominant motivation is the Hunger

TheseQ"iJ;T(s a) values imply that when the agent does not consider the pos-
sibility of belng poisoned{ = 1) and it is hungry, and it is neither next to the
food nor the elixir, the agent will go where the elixir is, ¢akt and drink it. This
is because the agent selects the action with the highest wathat state (first row
of figure 7) and this value corresponds to the action “go whiegeelixir is”. Once
the agent is in the new state (being next to the elixir), th@aavith the highest
value is “get the elixir” (the other option would be “go whehe food is”). Finally,
from that state, to be next to the elixir and to have the elthie selected action is
“drink the elixir”. Again, the agent could select “go whefretfood is”. It must be
said that in every state the agent considers all the avaitadiions related to every
object. This figure shows the values of the actions relatéldetdood and the elixir
because they are the highest ones but not because the agert e possibility
to select any other action related to another object.

As the daring factop varies, the agent changes its selection of actions. In the
case ofg = 0.8, when the agent is in the initial state, that is, not being texhe

food nor to the elixir, the action with the hlghesgf’” (s, a) value is “go where the

food is”. From that new state, being next to théa{‘"ood, the tgelects the action
“get the food” and from there, the action with the highestieak “eat the food”.
According to the values presented in figure 7, when the agdntrigry and the

daring factor is lower than.8, the agent will not select any action related to the
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elixir.

Nevertheless, table 3 shows that the number of times thatgaet drinks the
elixir when 5 = 0.8 is 21. This is because th@?ﬁ{jr(s,a) values analyzed are
those obtained when the agent is hungry. In the case thagthd & thirsty, the
Q;Z{jr(s, a) values of water and elixir are very similar and may causg thaome
occasions, it keeps preferring the elixir.

On the other hand, different behaviours are obtained inekperiment for
other inner states. When the agent has the Weakness as tiveadomotivation,
theQ;’f’e{jT(s, a) values related to the elixir are now lower than the onesesdlt the
medicine. As a result of this fact, the agent, when weak, ydveliinks medicine
instead of elixir, no matter what the value of the daringdads. Moreover, when
the agent has no dominant motivation, the&”’: (s, a) values related to the rest of
the objects, including the elixir, are lower than the ondateel to the medicine.
Therefore, when the agent is “ok”, for all the values of therdafactor the agent
prefers to drink medicine again.

In summary, in this experiment, when the agent does not consider thetwor
effect of the risky action, to be when the daring factofis- 1, it prefers to drink
the elixir when it is hungry or thirsty, since this action regery highQ?i (s, a)
value and, as a consequence, a f@ﬁ{;(s,a) value. Nevertheless, when the
agent is weak or when there is no dominant motivation, itgreefo drink medicine.

On the other hand, when the agent is risk-adverse, then tioy pbbehaviour
changes. Depending on the value of the daring fagtdhere will be a moment
when the agent will not choose to drink the elixir again, eii‘lsQ;{;{;T(s, a) value
is very low. It is very interesting that the agent not only ides not to drink the
elixir, but will not select any other action that leads totteauation. This is be-
cause, as shown in figure 5, the values of “go for the elixird &ake the elixir”

are also lower than the limi,,,.

6 Conclusions

In this paper, the usefulness of the mechanism inspireddryitieorder to learn
to deal with risky actions is shown. The risk is related toat®g rewards with a
very low probability. In order to test this algorithm, it hbeen implemented on
an autonomous agent. The agent lives in an environment vargaiagerous object
exists, the elixir, and the action of drinking it is consiggmisky according to our
definition.

The algorithm presented can be viewed as a risk-sensitinforeement learn-
ing algorithm. Using it, the agent tries to maximize a N@w.,,- value that com-
bines the optimal) values given by Q-learning and thg,,-s: values, when these
last ones are lower than a certain limit. The daring fadtponders the importance
of the worst results and the optim@lvalues. Therefore, this parameter defines the
risk-aversion of the agent.

As shown, the capacity of selecting the risk-aversion ofagent is the main
difference with the worst-case criterion proposed by Hé¢geger, 1994]. In rela-
tion to other risk-sensitive approaches, such as the o¢sitle exponential util-
ity functions [Howard and Matheson, 1972] [Coraluppi andrédes, 1999] and ex-
pected value-minus-variance-criterion [Heger, 1994]de@ot need the transition
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probabilities, since we use a model-free approach. Moreae are also able to
vary the daring factor during the life of the agent, since lg@nt @ values do
not depend on this factor. This fact makes the differencevéomt our approach
and the risk-sensitive reinforcement learning algoritmoppsed by Mihatsch and
Neuneier [Mihatsch and Neuneier, 2002].

Varying the value of the daring factor the results show thdten the agent
is risk-seeking § ~ 1), it learns to drink the elixir, despite its possible negati
effects. Therefore, most of the time the agent is able tafyateveral drives at the
same time. As a result, the average value of its wellbeingeiig figh, although
there are some occasional drops due to poisoning. On the lndinel, when the
agent becomes risk-adverse (low valuegifit disregards the elixir and follows
a “safe” policy of behaviour. This causes that the agent iposoned any more,
with no drops in its wellbeing, improving its quality of life

The mechanism proposed in this paper is essential for antons agents liv-
ing in a complex environment, since some behaviours coutgpcomise their in-
tegrity. Particularly, all superior animal has this kindheéchanism that helps them
to avoid actions that could lead to death. In many casesgtraihg process is as-
sociated to phylogenetics and therefore, it is not linketh@experiences of the
individual animal. In our tests, the agent learns everghin trial and error. Nev-
ertheless, it could be also possible to use the proposedanisoh to design agents
initially programmed with the knowledge of other agents.
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